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INTRODUCTION 

Few modern organisms evoke a sense of the primeval as 
does the horseshoe crab. Commonly seen shuffling awk-
wardly onto land to reproduce, yet surprisingly graceful 
in their usual aquatic habitat, horseshoe crabs are striking 
in both their outward dissimilarity from any other extant 
arthropod group (Fig. 1) and their sheer size. Large size 
among arthropods is often evoked as a relic of the distant 
past, from an age when giant arthropods ruled the Car-
boniferous. With a maximum length of just over half a 
meter, horseshoe crabs certainly appear to be remnants 
of grander times. Despite their antiquated look, horseshoe 
crabs can still yield scientific surprises; for example, the 
fact that they fluoresce under ultraviolet light was only 
documented in 2017 (Rubin et al. 2017). 

Perhaps in part because of their archaic appearance, 
horseshoe crabs have a checkered taxonomic history. As 
indicated by their common misnomer, horseshoe ‘crabs’ 
were once considered to be relatives of crustaceans (Owen 
1873), largely due to their aquatic habitat. Detailed com-
parative anatomical studies of the internal morphology 
of the horseshoe crab Limulus and scorpions led Lankester 
(1881) to propose a close relationship between horseshoe 
crabs and arachnids. Despite some initial disagreement 
(Packard 1882), the realization that horseshoe crabs are 
chelicerates set the foundations for modern interpretations 
of arthropod relationships. 

The historical ambiguities of horseshoe crab taxonomy 
extend down to the species level. The number of valid 
extant species was under debate as recently as the late 
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The American Horseshoe Crab Limulus polyphemus is an important ecological 
component of the United States Atlantic coastline, particularly in areas such as 
Delaware Bay, where large numbers congregate on beaches to spawn. These 
spawning events are crucial sources of food for shorebirds including migrating 
Red Knots Calidris canutus, which feed upon the eggs deposited within the sand. 
Red Knot numbers have steadily declined over the last few decades in direct 
response to decreases in the numbers of breeding horseshoe crabs, which are 
harvested by the biomedical industry and for bait by eel and conch fisheries. Red 
Knot conservation is intrinsically tied to horseshoe crab conservation, and 
harvesting restrictions have been in place since the early 2000s, although with 
apparently limited effect. Horseshoe crabs have a fossil record stretching back 
hundreds of millions of years, and their apparent morphological stasis over this 
time has fed their reputation as ecological generalists that are able to survive any 
environmental change. Despite their reputation for morphological and ecological 
conservatism, horseshoe crabs have undergone major marine to freshwater 
transitions at least two times in the past. The four extant horseshoe crab species 
(none of which have a fossil record) represent just a portion of the geographic 
and ecological diversity of a lineage which is not particularly immune to 
extinction. This review explores the evolutionary history of horseshoe crabs, from 
their origins in Ordovician seas, through the height of their diversity in 
Carboniferous coal swamps, to their restricted modern distribution. The 
economic, ecological, and scientific importance of horseshoe crabs is reviewed, 
and conservation concerns surrounding both American and Asian species are 
discussed.



1950s, confounded by over-splitting of the Asian horseshoe 
crab species (Waterman 1958). Four extant species are 
now recognized (Fig. 2): Limulus polyphemus (Linnaeus 
1758), from the Atlantic coast of North America and the 
Gulf of Mexico; Carcinoscorpius rotundicauda (Latreille 
1802) and Tachypleus gigas (Müller 1785), from the coast 
of Indonesia and the Bay of Bengal; and Tachypleus tri-
dentatus (Leach 1819), from the South and East China 
Seas.  

HORSESHOE CRABS AS A SOCIOECONOMIC, 
ECOLOGICAL, AND SCIENTIFIC RESOURCE 

Despite occurring along the coastlines of different continents 
in different oceans (with a distance of some 12,000 km 
between the closest Asian and American populations), 
horseshoe crabs have been utilized as a resource by 
humans in similar ways across their range. Indigenous 
peoples in both America and Asia utilized the horseshoe 
crab populations as a source of food, consuming the eggs 
as well as boiling and eating the meat of the legs (Speck & 
Dexter 1948, Christianus & Saad 2009), and horseshoe 
crab eggs are still considered a delicacy in parts of Asia 
today (Nelson et al. 2015, Shin et al. 2009). The Wampanoag, 
who once lived in what is present-day Massachusetts, 
used the horseshoe crab carapace to make instruments, 
needles, awls, spears and charms (Speck & Dexter 1948), 
while in Malaysia and Thailand the head shield has been 
used as a decorative ornament (Christianus & Saad 2009). 
Horseshoe crabs were also used as fertilizer for crops 
(Morison 1972, Christianus & Saad 2009), a technique 
subsequently adopted by European colonists in North 
America (Kreamer & Michels 2009). 

The exploitation of horseshoe crabs changed drastically 
with the onset of the 20th Century. Horseshoe crabs were 
harvested for fertilizer on an industrial scale (Berkson & 
Shuster 1999, Kreamer & Michels 2009), a practice that 
ceased in North America with the spread of cheap, 
artificial fertilizer (Walls et al. 2002) but still continues in 
Asia (Nelson et al. 2015, Pati et al. 2017). Horseshoe 
crabs are also now the primary source of bait for eel and 
conch fisheries in America and Asia (Bianchini et al. 
1981, Berkson & Shuster 1999). However, the most radical 
change to the relationship between humans and horseshoe 
crabs came with the advent of Limulus Amoebocyte 
Lysate (LAL; Novitsky 1984, 2009, Kumar et al. 2015) 
and its Asian-species equivalent, Tachypleus Amoebocyte 
Lysate (TAL; Hodes et al. 1987, Akbar John et al. 2012, 
Bal et al. 2016). LAL and TAL are derived from horseshoe 
crab blood and are important in the biomedical industry 
as a test for the detection and quantification for bacterial 
endotoxins (Das et al. 2015). As a result, horseshoe crabs 
are now regularly harvested for their blood (Rudloe 1983, 
Rutecki et al. 2004), with harvests in the US regulated as 
capture-release programs (Botton & Ropes 1987a). 

Horseshoe crabs are an important resource for a number 
of species aside from humans. Most famously, the seasonal 
spawning of horseshoe crabs along the east coast of North 
America provides a crucial stop-off point for migrating 
Red Knots Calidris canutus, which feed on the freshly-
laid Limulus eggs (Castro & Myers 1993, Karpanty et al. 
2006). Numerous other shorebirds also feed upon the 
eggs, as do sand shrimp and a variety of fish (Shuster 
1982, Walls et al. 2002). After hatching, the larvae and 
juveniles are preyed upon by amphipods and green, blue, 
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Fig. 1. Morphological terminology of horseshoe crabs as demonstrated by Limulus polyphemus (YPM IZ 070174). 



fiddler, and spider crabs alongside a range of fish (Botton 
2009). Few species predate adult horseshoe crabs, but 
Leopard Sharks Triakis semifasciata, Loggerhead Turtles 
Caretta caretta, and American Alligators Alligator missis-
sippiensis are some of their few direct predators, and are 
capable of crushing the thick external carapace (Keinath 
et al. 1987, Reid & Bonde 1990, Ehlinger et al. 2003, 
Seney & Musick 2007, Botton 2009). Long-tailed Macaques 
Macaca fascicularis and domestic pigs Sus domesticus 
have been observed predating the Asian horseshoe crab 
species (Ang 2016, Pati & Dash 2016). American Herring 
Gulls Larus smithsonianus and Great Black-backed Gulls 
L. marinus feed upon overturned horseshoe crabs stranded 
on beaches during spawning events (Botton & Loveland 
1993), tearing off the opisthosomal opercula and feeding 
upon the muscle tissue within the thoracetron, a predation 
style shared with House Crows Corvus splendens that 
feed on the Asian species (Debnath & Choudhury 1988). 
Finally, conch species of the genus Melongena predate 
horseshoe crabs by drilling through their carapace with 
the radula and consuming the flesh inside (Hathaway & 
Woodburne 1961). 

Although they have a variety of societal and biomedical 
uses, horseshoe crabs are also of great scientific interest 
due to their potential to contribute toward our under-
standing of a variety of evolutionary processes. The horse-

shoe crab fossil record extends some 480 million years 
into the past but is generally sparse, with rarely more 
than three or four species occurring at the same time 
(Størmer 1952), although decay experiments have suggested 
that the relative changes in diversity through time are 
largely accurate (Klompmaker et al. 2017). There have 
been a number of studies on horseshoe crab phylogeny 
over the years (Anderson & Selden 1997, Lamsdell 2013, 
2016, Lamsdell & McKenzie 2015), as well as analyses of 
the visual system (Fahrenbach 1981, Battelle 2006, Harzsch 
et al. 2006), development (Scholl 1977, Sekiguchi et al. 
1982, 1988, Farley 2010, 2012), and decay and preservation 
(Babcock & Chang 1997, Babcock et al. 2000, Klompmaker 
et al. 2017). Much of the scientific interest in the horseshoe 
crab fossil record, however, has focused on a single evo-
lutionary phenomenon: namely, the concept of evolutionary 
stasis and living fossils (e.g. Renwick 1968, Barthel 1974, 
Fisher 1984, 1990, Chatterji & Abidi 1993, Kin & Błaże-
jowski 2014). 

LIVING FOSSILS? 

The term ‘living fossil’ originates from Darwin (1859), 
who applied it to the Platypus Ornithorhynchus and South 
American Lungfish Lepidosiren, based on their supposed 
positions as surviving representatives of once widespread 
lineages now restricted to confined geographic areas. 
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Fig. 2. Geographic distribution of modern and fossil horseshoe crabs. Fossil occurrences are derived from Dunlop et al. 

(2018) for body fossils, with additional trace fossil occurrences from Patel & Shringarpure (1992), da Rosa et al. (1994), 
Pickford (1995), Wignall & Best (2000), Mikuláš & Mertlík (2002), Buta et al. (2005), Lermen (2006), Chakraborty & 
Battacharya (2012), Hasiotis et al. (2012), Fernández & Pazos (2013), Naurstad (2014), Lerner & Lucas (2015), Alberti et al. 

(2017), and Mujal et al. (2018). Limulus polyphemus is represented by YPM IZ 055605 (male) and YPM IZ 070174 (female), 
Carcinoscorpius rotundicauda by YPM IZ 055595 (male) and YPM IZ 055574 (female), Tachypleus gigas by YPM IZ 055578 
(male) and YPM IZ 055570 (female), and Tachypleus tridentatus by YPM IZ 055581 (male) and YPM IZ 055576 (female). 
Scale bars = 50 mm.



These restricted species were in turn considered to be 
subjected to less severe competition, resulting in them 
having rather anomalous morphologies in comparison 
to other modern taxa. Numerous taxa have since been 
assigned the ‘living fossil’ epithet, including a variety of 
flora (including the ferns Angiopteris, Dipteris, and 
Matonia, gymnosperms Cycas, Ginkgo, Sequoia, and quill-
worts such as Stylites), vertebrates (including the coelacanths 
Latimeria, Sixgill Shark Hexanchus, gars Lepisosteus, ‘pri-
mordial’ frogs Leiopelma, Earless Monitor Lizard Lan-
thanotus, Tuatara Sphenodon, kiwis Apteryx, opossums 
Didelphis, treeshrews Tupaia, Fossa Cryptoprocta, tapirs 
Tapirus, and Sumatran Rhinoceros Dicerorhinus), and 
invertebrates (including brachiopods Lingula, mollusks 
Entemnotrochus, Nautilus, Neopilina, and Nucula, echin-
oderms Metacrinus and Platasterias, onychophorans Peri-
patopsis, and arthropods Anaspides, Hutchinsoniella, Limu-
lus, Liphistius, and Pycnogonum) (Gordon & Jablonski 
1979). 

Despite its widespread use in scientific and public literature, 
there is little consensus over the definition of what makes 
an organism a living fossil. Darwin (1859) explicitly tied 
the concept to membership of a previously common and 
widespread fossil lineage, the possession of a restricted 
geographic range, and unusual morphology. However, 
alternative definitions have frequently focused predomi-
nantly on either temporal duration or the morphological 
similarity to extinct taxa. As such, living fossils have been 
defined as either: 1) a living species that has persisted 
over a long interval of geologic time; 2) a living species 
that is morphologically and physiologically similar to a 
fossil species as seen over long intervals of geologic time; 
3) a living species that has a preponderance of ‘primitive’ 
morphological traits; 4) a living species that has persisted 
over a long period of geologic time, is morphologically 
and physiologically similar to a fossil species as seen over 
long intervals of geologic time, or has a preponderance 
of ‘primitive’ morphological traits, and has a relict distri-
bution; 5) a living species once thought to be extinct; or 
6) an extant clade of low taxonomic diversity whose 
species have either persisted over a long interval of 
geologic time, are morphologically similar to fossil species 
that have persisted over long periods of geologic time, or 
have ‘primitive’ morphological traits (Schopf 1984). A 
recent review (Werth & Shear 2014) noted that living 
fossils share a number of characteristics, either alone or 
in combination: retention of an ancestral morphology, 
apparent stasis over geologic time, resemblance to ancient 
fossil forms, restricted relict distribution, and low taxonomic 
diversity. A reader may, however, be inclined to believe 
that these first three stipulations are recapitulations of 
the same condition, and 160 years after Darwin first 
coined the term, the definition of a living fossil is as 
mutable as it was at inception, relying upon some condition 
of similarity with fossil taxa, a limited geographic or 
environmental distribution, and a low number of species. 
Irrespective of the exact definition, horseshoe crabs are 
considered archetypal examples of a living fossil: Limulus 
and its extinct counterpart, Mesolimulus, grace the cover 

of the first print hardcover of Richard Fortey’s (2011) 
book Survivors, which explores a variety of species repre-
senting the apparently unchanged remnants of ancient 
lineages. 

The ‘living fossil’ terminology is much maligned in biology 
and paleontology, and has been criticized as being 
inaccurate and misleading, as it is frequently influenced 
heavily by the morphological complexity of the organism 
in question (Schopf et al. 1975). While the term has been 
defended as describing a genuine phenomenon (Eldredge 
1976), there have been a number of attempts to introduce 
new terminology, each focusing on a different aspect of 
the ‘essence’ of what makes a living fossil. Horseshoe 
crabs featured predominantly in these reformulations. 
The preeminent alternative to living fossils for much of 
the 20th century was the concept of bradytely, derived 
from Simpson’s (1944) discourse on tempo and mode in 
evolution and championed for horseshoe crabs by Fisher 
(1984, 1990). Bradytelic lineages are clades that exhibit 
apparent slow rates of evolution (Fisher 1990) as evidenced 
by little morphological variation between species. One 
clade of horseshoe crabs – the Limulina, which includes 
the species alive today – was determined to exhibit 
bradytely (Fisher 1984). The concept of bradytely has 
also been criticized, however, as bradytelic lineages often 
exhibit the same degrees of genetic variability as clades 
that do not exhibit bradytely (Schopf 1984). A more 
recent conceptual alternative has been proposed: stabilo-
morphism (Kin & Błażejowski 2014). Stabilomorphs are 
defined as organisms that exhibit relative morphological 
stability in time and spatial distribution, having a taxonomic 
status not exceeding the genus level, and have survived 
one or more mass extinction events. The concept essentially 
is that stabilomorphs are so well-adapted that they do 
not express phenotypic variants in response to environ-
mental changes. The theoretical feasibility of the concept 
notwithstanding, one advantage of stabilomorphism is 
that it can apply to extinct taxa and so is a more general 
concept without being tied to the contingent factor of the 
organisms needing to exist in our discrete time period. It 
does, however, tie the definition to two other arbitrary 
conditions: invoking the genus level as the taxonomic 
level of focus (any taxonomic rank above the level of 
species being subjective), and the requirement to have 
survived at least one mass extinction (thereby once again 
making the definition contingent on a random point in 
time).  

Ultimately, quantitative studies of living fossils, bradytelic 
lineages, or stabilomorphs have found little support for 
the supposed archaic nature of taxa traditionally considered 
to show extreme morphological stasis. The other living 
fossil ‘poster children’, the coelacanths Latimeria and nau-
tiloids Nautilus, have been stripped of their titles as it was 
revealed that coelacanths exhibit neither morphological 
stasis nor low molecular substitution rates (Casane & 
Laurenti 2013) and Nautilus is in the process of a diversi-
fication event (Wray et al. 1995). Another classic example, 
living monoplacophoran mollusks, were shown to have 
radiated fairly recently (Kano et al. 2012). Most critically, 
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restudy of the branchiopod crustacean Triops cancriformis, 
one of the few living species with a fossil record ostensibly 
extending into the Mesozoic, determined that modern 
and fossil populations exhibit distinct ontogenetic trajec-
tories with clearly distinguishable adult morphotypes 
(Wagner et al. 2017). As a result, the fossil specimens 
represent a separate species (Lagebro et al. 2015), and 
Triops cancriformis does not in fact have a known fossil 
record. The one exception to this trend is Sphenodon 
punctatus, the Tuatara; proposing a slow rate of lineage 
evolution and a morphology positioned close to the 
centroid of clade morphospace as a testable definition for 
a living fossil, a study of Rhynchocephalia found that 
Sphenodon does indeed fit the title (Herrera-Flores et al. 
2017).  

Similarly, many of the ‘living fossil’ characteristics applied 
to horseshoe crabs do not hold up under scrutiny. None 
of the modern species possess a fossil record. The so-
called ‘trilobite larva’ do not exhibit any real similarity to 
trilobite morphology (Fig. 3), and despite claims that 
horseshoe crabs are the closest living relative to trilobites 
(Shuster 1982), this is not borne out by any phylogenetic 
analysis (Lamsdell 2013, Lamsdell et al. 2013, Legg et al. 
2013, Stein et al. 2013, Aria et al. 2015). Furthermore, 
analysis of the horseshoe crab genome indicates the 
lineage underwent a whole-genome duplication event 
prior to the divergence of the extant species (Kenny et al. 
2016), resulting in redundant genes that can accrue muta-
tions and provide the genetic raw material for evolutionary 
innovation (Ohno 1970). Yet, horseshoe crabs are still 
regularly evoked as living fossils. There is some danger in 
this line of thought, especially as articulated in the sta-
bilomorph concept, as living fossils are often considered 
to have persisted through mass extinctions and changing 
environments for millions of years without any change to 
their morphology or ecology. By implicit assumption, 
there is a public perception horseshoe crabs will therefore 
be able to weather any future changes, an opinion not 
shared by the scientists that study them (Mishra 2009, 
Shin et al. 2009, Smith et al. 2009, Beekey & Mattei 2015, 
Botton et al. 2015, Pati et al. 2017). As we shall see, the 
fossil record demonstrates that, while horseshoe crabs 
have maintained a distinct and recognizable morphology 
for long periods of geologic time, they have occupied a 
variety of ecologies over their evolutionary history and 
also experienced their fair share of extinction. 

THE DYNAMIC HORSESHOE CRAB: PHYLOGENY 
AND EVOLUTIONARY HISTORY 

Horseshoe crabs are first known from the Ordovician, 
approximately 480 million years (MY) ago (Fig. 4). The 
oldest described species is the diminutive Lunataspis 
aurora, known from 445 MY-old marine rocks in Canada 
(Rudkin et al. 2008). The oldest known horseshoe crab, 
however, is an undescribed species from Morocco (Van 
Roy et al. 2010) that lived 477 MY ago at a high, southern 
polar latitude (Van Roy et al. 2015). These unassuming 
creatures set the template for horseshoe crabs through 
the remainder of the Paleozoic (which terminates at the 
end-Permian mass extinction, 252 MY ago); the segments 
of the body were fused into a thoracetron but the vestiges 
of their segment margins remained visible, and the telson 
was elongated and approximately equal in length to the 
rest of the body (Fig. 4a, b). Their appearance in the fossil 
record is sudden, and this, combined with the distinctiveness 
of their morphology compared to their closest relatives, 
suggests either rapid rates of evolutionary change associated 
with their origin, a cryptic fossil record extending into 
the Cambrian, or a combination of these scenarios. They 
are also the only true horseshoe crabs known for the next 
100 MY. 

This sizeable gap in the fossil record went unrecognized 
until the discovery of Lunataspis. Previously, a plethora of 
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Fig. 3. Comparisons between larval and juvenile horseshoe 
crabs and trilobites. a. ‘Trilobite’ larva of Limulus 

polyphemus (YPM IZ 076994). b. Stage 5 instar of Limulus 

polyphemus (YPM IZ 098247). c. Cedarina schachti (YPM IP 
531072), one of the most ‘horseshoe crab’-like trilobites. 
The similarity is not, however, striking. Note that the 
apparent long tail spine is actually a dorsal spine coming 
off one of the body segments. d. Dalmanites limulurus 
(YPM IP 428856), a more typical-looking trilobite. Scale 
bars = 1 mm.



chelicerate arthropods, called synziphosurines, had been 
considered to represent early horseshoe crabs (Eldredge 
1974, Bergström 1975). While not overly common, numer-
ous species are known from the Paleozoic; these animals 
had freely articulating body segments that had not been 
fused into a thoracetron, and so were considered to be 
the ancestral stock from which modern horseshoe crabs 
(xiphosurids) evolved towards the end of the Paleozoic 
(Anderson & Selden 1997). Lunataspis upset the paleon-
tological order of events, as the new fossils pre-dated all 
of the supposedly ancestral synziphosurines; instead, these 
species must themselves have been descendants of offshoots 
from an even more ancient ancestral stock. Subsequent 
discoveries of synziphosurines with biramous limbs (Briggs 
et al. 2012) – retaining the upper branch of the arthropod 

limb, which has been lost in other chelicerates (Dunlop & 
Lamsdell 2017) – or displaying a variety of eurypterid or 
arachnid characteristics (Selden et al. 2015, Lamsdell et 
al. 2015) along with ensuing phylogenetic analyses led to 
the removal of synziphosurines from horseshoe crabs, as 
it was revealed that synziphosurines are in fact a disparate 
group of chelicerate arthropods that include stem euche-
licerates and closer relatives to arachnids and eurypterids 
(Lamsdell 2013, 2016). There are therefore no horseshoe 
crabs currently known for the entirety of the Silurian 
(444–419 MY ago), although logically the lineage must 
have been present. 

When horseshoe crabs next appear, towards the end of 
the Devonian (around 365 MY ago), they had already 
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Fig. 4. Horseshoe crab evolutionary history. Phylogeny (derived from Lamsdell 2016) with taxon ranges shown by 
thickened bars. Branches are color coded by ecological occupation: marine environments are shown in blue, while 
freshwater environments are orange. The position of figured taxa are denoted by letters. a. Unnamed xiphosurid, 
Morocco (YPM IP 531838). b. Lunataspis aurora, Canada (MM I-3989). c. Paleolimulus signatus, United States (FMNH 
PE56851). d. Limulitella bronni, France (Grauvogel-Gall collection). e. Victalimulus mcqueeni, Australia (NMVM P22410-
3). f. ‘Limulus’ darwini, Poland (ZPAL X.1/O-B/XA2). g. Euproops danae, United States (YPM IP 1816909). h. Alanops 

magnificus, France (MNHN SOT 88526). i. Dubbolimulus peetae, Australia (NMVM P315229). j. Vaderlimulus tricki, United 
States (UCM 140.25). k. Austrolimulus fletcheri, Australia (AM F.38274). Scale bars = 5 mm.



attained a global distribution. Although only three species 
are known, they are found in North America (Babcock et 
al. 1995), Australia (Pickett 1993), and Russia (Chernyshev 
1933), which at the time formed parts of three distinct 
paleocontinents. This widespread distribution is maintained 
for much of the rest of their evolutionary history: horseshoe 
crab fossils are known from every continent, including 
Antarctica (Fig. 2). While no detailed analysis has been 
done, this prehistoric distribution likely explains the dis-
parate geographic occupation of modern horseshoe crabs 
as a relict of this past worldwide occupation.  

The horseshoe crab fossil record becomes much more 
abundant during the Carboniferous with the radiation of 
the Belinurina, the most speciose clade of horseshoe 
crabs known. This high diversity is somewhat inflated by 
over-splitting, wherein a number of characteristics that 
change through ontogeny have been used to define species 
(Haug et al. 2012, Haug & Rötzer 2018), and through 
their occurrence in coal swamps, a sheltered environment 
more conducive to the preservation of unmineralized 
cuticle, although by all accounts the heightened diversity 
of belinurines remains a genuine phenomenon. The cause 
of this proliferation may be linked to their habitat: coal 
swamps are freshwater environments, and the belinurines 
are the first of several horseshoe crab lineages to invade 
the non-marine realm (see Fig. 4). It has been suggested 
that the change in niche occupation resulted in a subsequent 
change in population structure, with increasing likelihood 
of allopatric speciation through geographic isolation 
(Lamsdell 2016), a similar process to that observed today 
in modern fish (DeWoody & Avise 2000).  

The switch from a marine to freshwater habitat requires 
extreme physiological changes in salinity tolerance (Little 
1990). Adults of extant Limulus and Tachypleus can 
tolerate a wide range of salinities, but cannot survive in 
fresh water for extended periods of time (Towle & Henry 
2003, Sekiguchi & Shuster 2009). The larvae, however, 
are capable of tolerating a wider range of salinities for 
extended periods of time (Shuster 1982, Botton et al. 
2010), and it has been shown that they have a greater tol-
erance for salinities lower than 35‰ than they do for 
hypersaline environments (Ehlinger & Tankersley 2007). 
Belinurines, and other lineages of non-marine horseshoe 
crabs, may have made the transition out of the marine 
realm by retaining aspects of their larval physiology. 
Interestingly, belinurines exhibit a general paedomorphic 
evolutionary trend and retain increasingly juvenile mor-
phologies into adulthood (compare Fig. 4g, h with Fig. 
3a, b). However, developmental studies have shown that 
larval horseshoe crabs in low salinities exhibit slower 
rates of development (Jegla & Costlow 1982, Ehlinger & 
Tankersley 2004); as a consistently low salinity environment 
could therefore conceivably result in individuals reaching 
sexual maturity before otherwise completing their mor-
phological development, it is impossible to discern 
whether the paedomorphic trend in belinurines facilitated 
their transition to freshwater environments or was a 
result of it. 

Despite the rapid diversification undergone by belinurines 
in freshwater environments, their dependence on coal 
swamps ultimately proved to be their undoing when rain-
forest ecosystems collapsed towards the end of the Car-
boniferous (DiMichele et al. 2006, 2009). Belinurines 
underwent a major extinction, with only a few species 
surviving into the Permian before they, too, went extinct. 
Marine horseshoe crabs were unaffected by this dramatic 
terrestrial environmental change: Paleolimulus signatus 
(Fig. 4c) has a long geologic range extending from the 
mid Carboniferous well into the Permian (Beecher 1904, 
Dunbar 1923, Raymond 1944) and is equally abundant 
before and after the loss of the rainforests. Early repre-
sentatives of austrolimulids, a distinctive group of horseshoe 
crabs originally recognized from the Mesozoic of Australia, 
also weathered the environmental upheaval from marginal 
marine environments. 

Horseshoe crabs appear to recover remarkably quickly 
from the end-Permian mass extinction, when up to 96% 
of all marine species went extinct (Erwin 1990). Two 
clades diversified early in the Triassic, the austrolimulids 
and the limulids. Austrolimulids were by this point inhab-
iting fully freshwater streams and rivers (Lamsdell 2016). 
They achieved a degree of success that, while not matching 
the diversity of the belinurines, indicates that they were 
also able to thrive outside of marine salinities across the 
globe: austrolimulids have been described from Europe 
(Hauschke & Wilde 1987), North America (Lerner et al. 
2017) and, as their name suggests, Australia (Riek 1955, 
Pickett 1984). These horseshoe crabs do not show an 
obvious paedomorphic trend as is apparent in belinurines; 
however, austrolimulids do exhibit extremely aberrant 
morphologies that clearly set them apart from other 
horseshoe crabs (Fig. 4i–k), with an extremely broad 
prosomal carapace and elongated and laterally-splayed 
genal spines in later species. Austrolimulids underwent a 
major drop in diversity towards the end of the Triassic 
(201 MY ago), with only a single post-Triassic species, 
Casterolimulus kletti (Holland et al. 1975), known from 
the Cretaceous (94 MY ago). This long gap may be 
indicative of either a cryptic fossil record, or that Cast-
erolimulus may be taxonomically misplaced: a species of 
limulid, Victalimulus mcqueeni (Riek & Gill 1971), is also 
known from the Cretaceous, again from a freshwater 
environment. It is possible that Casterolimulus should be 
more closely aligned to Victalimulus. However, this still 
leaves a similar temporal gap between Victalimulus and 
its current closest relative (some 100 MY), and so it is 
clear that the Jurassic horseshoe crab record is incomplete 
irrespective of the exact taxonomic affinities of Cast-
erolimulus. 

While austrolimulids were diversifying in freshwater envi-
ronments in the early Mesozoic, limulids were radiating 
in the marine realm. A number of these early limulids 
are known from an abundance of individuals: over 200 
specimens of Limulitella bronni (Fig. 4d) are preserved in 
marginal marine settings from the Triassic of France 
(Selden & Nudds 2012). Multiple specimens of Mesolimulus 
walchi are also known from the Jurassic of Solnhofen in 
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Germany. These horseshoe crabs can exhibit exceptional 
preservation of muscle tissue (Briggs et al. 2005) and are 
considered to have been fossilized after being swept into 
anoxic lagoonal conditions by storm events (Barthel et 
al. 1990). Famously, some of these Mesolimulus specimens 
are preserved dead at the end of their trackways (Seilacher 
2007); these trackways can extend for several meters, 
even showing the impact mark of the animal hitting the 
lagoon floor and its erratic movements as it succumbs to 
anoxia (Lomax & Racay 2012). Trackways, such as the 
Solnhofen ‘death marches’, provide important evidence 
regarding the behavior of extinct horseshoe crabs (ichnology, 
the study of organismal traces in the fossil record, is the 
only way of directly studying ancient behavior; Plotnick 
2012). Horseshoe crab trackways are easily identifiable in 
the fossil record as they closely resemble the trackways of 
modern species (Fig. 5). Trackways are generally more 
common than body fossils, as a single animal can leave 
many tracks over its lifetime, and tracks are the only 
record of horseshoe crabs from a number of continents 
(Fig. 2). Trackways also provide the first evidence of mass 
spawning, which is perhaps the defining behavioral char-
acteristic of modern horseshoe crabs and the main reason 
for the ecological importance of Delaware Bay (Shuster 
& Botton 1985). Extensive trackways from the Middle 
Triassic (243 MY ago) of Germany reveal that horseshoe 
crabs were congregating and spawning on beaches during 
high tides much as their modern relatives do (Diedrich 
2011). Fascinatingly, these horseshoe crabs were preyed 
upon by large quadrupedal archosaurs, distant relatives 
of the birds that rely on horseshoe crab eggs as a food 
resource in the modern Delaware Bay ecosystem. 

It was around the Middle Triassic that species potentially 
assignable to extant genera began to appear. The oldest of 
these is Tachypleus gadeai, from the Triassic of Spain, 
although this has also been assigned to its own genus 
Heterolimulus (Vía Boada & De Villalta 1966). A species 
assigned to Limulus (Fig. 4F) has also been reported 
from the Jurassic (148 MY ago) of Poland (Kin & Błaże-
jowski 2014). Phylogenetic analyses have, however, failed 
to unequivocally resolve the species within the genus 
Limulus (Lamsdell & McKenzie 2015, Lamsdell 2016) 
and additional horseshoe crab specimens assignable to 
the extinct genus Crenatolimulus are known from the 
same locality (Błażejowski 2015). It is likely that the com-
bined material represents a single species that should be 
assigned to Crenatolimulus (Tashman 2014). The first 
probable occurrences of Limulus and Tachypleus are from 
the Cretaceous (~105 MY ago), the most convincing of 
which is Tachypleus syriacus (Fig. 6). This species, known 
from marine strata of Lebanon, preserves clear prosomal 
sexual dimorphism with males exhibiting a pronounced 
anterior scalloped margin, which is otherwise only known 
from the extant Tachypleus tridentatus. As this morpho-
logical development is absent in Tachypleus gigas, phylo-
genetic analysis resolves Tachypleus syriacus within the 
Tachypleus crown group (Lamsdell & McKenzie 2015). 

While there is broad agreement that the modern Asian 
species form a clade (Tachypleinae), early molecular 

analyses suggested that Tachypleus was paraphyletic in 
relation to Carcinoscorpius (Shishikura et al. 1982, Xia 
2000, Kamaruzzaman et al. 2011), while morphological 
data retrieves Tachypleus monophyly (Lamsdell & McKenzie 
2015, Lamsdell 2016). However, recent molecular analyses 
converge on the morphological topology (Obst et al. 
2012, Periasamy et al. 2017), and there now appears to be 
general support for a monophyletic Tachypleus. The one 
caveat to this is that it leaves Carcinoscorpius with a 250 
MY gap in its fossil record. Carcinoscorpius is one of two 
limulid species known to persist for extended periods in 
non-marine salinities, the other being Victalimulus from 
the Cretaceous of Australia (Fig. 4e). It is possible that 
Carcinoscorpius is actually nested within Tachypleus, and 
that morphological changes as Carcinoscorpius has adopted 
a more marginal marine lifestyle obfuscates this relationship. 
Perhaps more likely, a number of fossil horseshoe crab 
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Fig. 5. Horseshoe crab trackways. a. Fossil limulid tracks 
(YPM IP 3954). b. Modern trackway from Pickering Beach, 
Delaware, with Limulus trackmaker. c. Details of modern 
trackway from Pickering Beach, Delaware in more 
consolidated sand. Scale bars = 20 mm.



species (such as Tachypleus gadeai) may be closer related 
to Carcinoscorpius than currently thought. 

Modern horseshoe crabs are ecological generalists that 
can survive in a wide range of salinities and temperatures 
(Sekiguchi & Shuster 2009) although it is worth remem-
bering that, outside of spawning, the majority of adults 
spend their lives on the continental shelf in fully marine 
conditions (Botton & Ropes 1987b). It is therefore note-
worthy that the majority of past horseshoe crab diversity 
and morphological disparity has been associated with 
entirely non-marine, freshwater environments. It has 
been shown that modern horseshoe crab populations are 
genetically discrete (King et al. 2005), each with some 
variation on their exact physiological tolerances (Sekiguchi 
& Shuster 2009). It has been suggested that this pool of 
genetic variability will ensure that at least one population 
has the potential to survive any environmental changes 
and secure the evolutionary future of horseshoe crabs 
into the next geologic epoch (Sekiguchi & Shuster 2009). 
However, to borrow a concept from the writing of Stephen 
Jay Gould (1989), any observer of horseshoe crabs during 
the Carboniferous would be justified in predicting that 
the future of the lineage lay among the large number of 
freshwater coal swamp species and not among the handful 
of species inhabiting the seas at the time. Similarly, a 
traveler to the Triassic would be hard pressed to predict 
whether it would be the marine limulids or freshwater 
austrolimulids that persisted through to our present day. 
This is to say that, while the genetic diversity between 
populations may increase the chances of the long-term 
persistence of the lineage, it should not be taken for 
granted that the remaining horseshoe crab species will 
successfully adapt to future environmental changes. Fur-
thermore, extirpation of local populations could drastically 
influence the overall genetic diversity of a species and 
severely impact the long-term chances of species survival.  

HORSESHOE CRABS: PAST, PRESENT, FUTURE? 

Concerns surrounding horseshoe crab conservation have 
generally focused on the health of populations within the 
United States and its impact on Red Knots (Karpanty et 
al. 2006), as it has been shown that a decline in volume of 
horseshoe crab eggs leads to a decline in bird survivorship 
(Baker et al. 2004). As discussed earlier, horseshoe crabs 
have been an economic resource for decades, and the 
industrialization of this exploitation has put immense 
pressure on their North American populations (Faurby 
et al. 2010). Estimates of the harvest of horseshoe crabs 
from Pleasant Bay, Massachusetts in 2001 indicated that 
harvesting resulted in mortality of 1–2% of the population 
(Rutecki et al. 2004), while also noting that the population 
at Pleasant Bay was one of the least exploited populations 
along the east coast. Modern harvests are split between 
taking bait for eel and conch fisheries (Bianchini et al. 
1981, Berkson & Shuster 1999) and the biomedical 
industry (Rudloe 1983). Harvesting quotas are now reg-
ulated (Atlantic States Marine Fisheries Commission 
1998, 2006) and biomedical companies operate capture-
release programs (Botton & Ropes 1987a). Despite these 
restrictions, the annual horseshoe crab harvest has been 
consistently higher since the 1980s than when records 
began in 1970 (Niles et al. 2009, Millard et al. 2015). It is 
worth noting that, with the extreme exploitation for 
fertilizer in the early 1900s (Berkson & Shuster 1999, 
Kreamer & Michels 2009), our observed 1970s baseline 
for horseshoe crab numbers is most likely derived from 
an already depleted population. 

The harvest restrictions have also resulted in an increase 
in illegal catching in North America and importation of 
Asian species to supply the bait market (Botton et al. 
2015). Horseshoe crabs in Asia experience many of the 
same human-driven pressures as their American coun-
terparts, as well as additional threats from human infringe-
ments on their spawning grounds (Nelson et al. 2016, 
Pati et al. 2017). Several conservation programs aiming 
to preserve the Asian species are underway (Tsuchiya 
2009, Kwan et al. 2017), although they are generally 
limited in scope and many countries have no conservation 
efforts at all (Mishra 2009). 

Aside from the direct human influence on horseshoe 
crab populations, human impact on global climate may 
also be a threat to their long-term survival. Sea level is 
predicted to rise over the next 100 years, driven by global 
temperature increases (Meehl et al. 2005, Rahmstorf 2007, 
Vermeer & Rahmstorf 2009), which will result in a natural 
landward progression of the beach-marsh systems that 
horseshoe crabs rely upon as their breeding grounds 
(Loveland & Botton 2015). However, human engineered 
stabilization of coastal environments through groins, 
barriers and bulkheads will halt this landward progression 
and result in the total loss of breeding ground habitat 
(Botton et al. 1988, Botton 2001, Berkson et al. 2009, 
Hsieh & Chen 2009). Another possibility that does not 
appear to have been considered is that rising temperature 
may directly impact horseshoe crab reproduction. Sea 
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Fig. 6. Sexual dimorphism in Tachypleus syriacus, from the 
Cretaceous of Lebanon. a. Female (MSNM i27468). b. Male, 
with anterior scalloping of the prosomal carapace indicated 
by white arrows (MSNM i9352). Scale bars = 20 mm.



surface temperatures are reaching record highs (Blunden 
& Arndt 2016), and developmental studies have demon-
strated that horseshoe crab embryos develop more rapidly 
in warmer temperatures (Jegla & Costlow 1982, Carmichael 
& Brush 2012). If rising temperatures were to result in 
earlier larval emergence times, it is unclear what impact 
this would have on horseshoe crab populations, especially 
as horseshoe crab larvae do not disperse far from their 
hatching beaches (Botton et al. 2010) and undergo major 
shifts in diet as they develop into juveniles and eventually 
adults (Gaines et al. 2002). Perturbations in embryonic 
development could conceivably result in a disconnect 
between emergence time and food source availability, 
and if this were to happen, horseshoe crab populations 
would rapidly collapse. 

Horseshoe crabs have a rich evolutionary history extending 
for hundreds of millions of years. During this time they 
have repeatedly invaded freshwater environments, devel-
oped bizarre morphologies, and occupied every continent 
on Earth. Our modern species, with their much more 
limited geographic distributions, represent only a fraction 
of the lineage’s past ecological and morphological diversity. 
As our understanding of the horseshoe crab fossil record 
has evolved, it has become apparent that the most successful 
lineages were those that moved out of their usual marine 
habitat, although all of these ecological invasions ultimately 
ended in failure. Horseshoe crabs do not appear to be 
especially immune to extinction, and genetic studies have 
shown that while the modern species are indeed ecological 
generalists, they are so in the sense that their populations 
each have somewhat distinct physiological tolerances, 
rather than in any one individual being able to survive 
transplantation into a new environment. Everything we 
learn about these fantastic creatures demonstrates that 
we should not remain unconcerned about the survival of 
the four remaining species, especially as they face concerted 
pressures from human activities unlike any the lineage 
would have experienced over the course of their evolution. 
International discussion and collaboration is the way for-
ward if we want to develop effective conservation measures 
(Botton 2001, Berkson et al. 2009, Hsieh & Chen 2009, 
Botton et al. 2015); however, social and political interest 
beyond that of researchers and conservationists is going 
to have to be leveraged if we want to avoid losing our 
horseshoe crab species to the geologic past. 
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